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Motivation

o-correct sequential test

Sample complexity upper bound

Goal: Identify the item having the high-
est averaged return.

Typical assumptions: Parametric
(Bernoulli, Gaussian).

— Arm 1
— Arm 2
— Arm 3

Arm 4

/\ Too restrictive !

= This paper:

Bounded distributions !

Crop-management task:
e item = planting date
e Observation = yield
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Figure 1: DSSAT instances’ density (K = 4).

? How to obtain a d-correct sequential test ?

=== recommend the empirical best arm 2,, = i*(F,,), where N,, ; = Ete[n] 1(I; =1)

== GLR stopping rule: given a calibrated threshold c(n, §), define

7s = inf{n € N | rr;iAn Wi (in,j) > ¢(n,d)}, (1)
J7Ftn

where the empirical transportation cost between arms (i, j) is

Win(i,5) = inf {NoiKipe(Foiy ) + NogKihe (Fojiw)}

Top Two sampling rule

Best-arm identification (BAl)

K arms: F; € F cdf ofarm ¢ € [K| with mean m(F;) = Exr, | X].

Set of distributions F with set of means Z:
(a) Bounded distributions in [0, B] and Z = (0, B),
(b) Single parameter exponential families (SPEF) with sub-exponential tails.

Goal: identify i*(F') = arg max, ¢, m(F;) with confidence 1 — 4 € (0,1).

Algorithm: at time n,

e Sequential test: if the stopping time 75 is reached, then return the candidate
answer 2,,, else

e Sampling rule: pull arm I,, and observe X,, ~ F7 .

Objective: Minimize Eg|7s] for J-correct algorithms, meaning that

Pr |75 < +00, ir, £ i (F)] <4 .

Choose a leader B,, € | K]
Choose a challenger C,, # B,,
Sample B,, with probability 3, else sample C,,

? How to choose the leader ?

v Thompson Sampling (TS) (Russo, 2016), arg max;c g 60; with 6 ~ 1I,,_, where
I1,,_, is a sampler on Z%.

= Empirical Best (EB), 7,,_1.

? How to choose the challenger ?

== Re-Sampling (RS) (Russo, 2016), arg max,¢(x) i where we sample 6 ~ II,,_; until
By, ¢ argmax, ¢k 0;-

= Transportation Cost (TC) (Shang et al., 2020) = [SHKMV20], arg min,_ g Wh_1(Bn, 7).
= Transportation Cost Improved (TCl),

argmin W,,_1(B,,7) + log(Np—1;) .
J7#Bn

Theorem 1. Given (1) with a calibrated threshold, instantiating the Top Two sam-
pling rule with any pair of leader/challenger satisfying some properties yields a
d-correct algorithm, and for instances F € F* having distinct means it satisfies

lim sup Epim]
5—0 10g(1/5)

< T}(F).

Table 1: Leaders and challengers satisfying the sufficient properties for Theorem 1 to hold.

Distributions TS EB RS 1C TClI

SPEF Gaussian  [SHKMV20] v [SHKMV20] [SHKMvV20]
Bernoulli v v v v v
sub-Exp ? v ? v v

Bounded v v v v v

Proof. Convergence time T = inf{T | Vn > T, ||N,,/n — w’||« < €}. Under (1),

In(1/0) ~5_0 c(n,0) > n;léiﬁ Wi (i, J) ~n>y nTE(F)_l .
j#in

Sufficient exploration: min; ¢ NV, ; > /n/K for n large enough.

Let Vi = Pjn—y[In = 3] @and ¥,, ; = Zte[n] Y. Then, (N, — ¥, ;)/+/n are
sub-Gaussian random variables and the Top Two sampling rule satisfies

Yn,i = BPn—n)[Bn = i) + (1= 8) > Pi(n_1)[Bn = jIP|(n—1)[Cn = i|Bn = j] .
JFu

Convergence towards w”: showing Er[T5] < +oo for e small enough
e Leader, P, | B4+1 # %] = O(n™ ) for n large enough, with o > 0.
e Challenger, for n large enough and all i # *, ¥, ;/n > wf + € Implies that

Sample complexity lower bound

Bounded instances

Garivier and Kaufmann (2016), Agrawal et al. (2020): For all J-correct algorithm,

VF ¢ F&, Eglrs] > T*(F)In(1/(2.46)) .

Family of 5-algorithms: 5 € (0, 1) proportion of pulls to the best arm (Russo, 2016).
== Example: Top Two sampling rule.

The inverse of the 5-characteristic time is

T:(F) ! = sup min inf { B (Fix(my, U +w7;lC;; F;,u)p .
B( ) wEAK,wi*(F)zﬁi#”;*(F)UEI{ f( ) ) f( )}

Ak simplex, K. (F,u) = inf {KL(F,G) | G € F, m(G) = u} forall (F,u) € FxT.

inf

Properties:
o T*(F) o min[ge(o,l) TE(F) and Tl*/Q(F) S QT*(F)

o T;(F) is achieved for a unique S-optimal allocation w” when i*(F) is unique.

Calibrated threshold: ¢(n,d) =In(1/0) +2In(1+n/2) + 2+ In(K — 1).

Computing empirical KCiy¢: let (X;;):c[n,, ;) € the samples of arm ¢, then
Xt ; — U
In{1—-X—
> w1

which is computed with a zero-order optimization algorithm (e.g. Brent’s method).

Nn,zK_I_ (Fn,iau) — Sup

inf

Computing W, (7, j): minimizing a univariate function on a bounded interval.

? How to design a sampler over (0, B)® ? Riou and Honda (2020)
= Dirichlet sampler: 1I,, = Xie[K] II,,; where II,, ; uses the empirical cdf F}, ;
augmented by {0, B}. The sampler 11, ; returns

Z tht,i -+ BwNn’i+1 with w ~ Dir(an,7;+2) .
tE[Nn’i]

P [Crst = i| Buyr = i*] = O(n=). -
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Figure 2: Empirical stopping time for & = 0.01 on (a) DSSAT instances and (b) random and distinct
Bernoulli instances (K = 10) with u; = 0.6 and u; ~ U([0.2,0.5]) for ¢ # 1. Lower bound is
T*(F)In(1/4). Top Two algorithms with g = 1/2.

Conclusion

1. Generic and modular analysis of Top Two algorithms.
2. Proving asymptotic S-optimality of Top Two algorithms as in Table 1.

3. Competitive performance on a real-world non-parametric task.




